Ground state and multiple solutions for a critical exponent problem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Multiple Solutions for a Singular Elliptic Problem with Critical Sobolev Exponent

and Applied Analysis 3 The following Hardy-Sobolev inequality is due to Caffarelli et al. 12 , which is called Caffarelli-Kohn-Nirenberg inequality. There exist constants S1, S2 > 0 such that (∫ RN |x|−bp |u|pdx )p/p∗ ≤ S1 ∫ RN |x|−ap|∇u|pdx, ∀u ∈ C∞ 0 ( R N ) , 1.8 ∫ RN |x|− a 1 |u|dx ≤ S2 ∫ RN |x|−ap|∇u|pdx, ∀u ∈ C∞ 0 ( R N ) , 1.9 where p∗ Np/ N − pd is called the Sobolev critical exponent. ...

متن کامل

A nondegeneracy result for least energy solutions to a biharmonic problem with nearly critical exponent

Consider the problem ∆2u = c0K(x)uε , u > 0 in Ω, u = ∆u = 0 on ∂Ω, where Ω is a smooth bounded domain in RN (N ≥ 5), c0 = (N − 4)(N − 2)N(N + 2), p = (N + 4)/(N − 4), pε = p− ε and K is a smooth positive function on Ω. Under some assumptions on the coefficient function K, which include the nondegeneracy of its unique maximum point as a critical point of HessK, we prove that least energy soluti...

متن کامل

Existence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight

‎This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight‎. ‎We apply the variational methods to prove the existence of ground state solution‎.

متن کامل

Multiple Positive Solutions for Equations Involving Critical Sobolev Exponent in R N

This article concerns with the problem ?div(jruj m?2 ru) = hu q + u m ?1 ; in R N : Using the Ekeland Variational Principle and the Mountain Pass Theorem, we show the existence of > 0 such that there are at least two non-negative solutions for each in (0;).

متن کامل

Solutions of an Elliptic System with a Nearly Critical Exponent

This problem has positive solutions for ǫ > 0 (with pqǫ > 1) and no non-trivial solution for ǫ ≤ 0. We study the asymptotic behaviour of least energy solutions as ǫ → 0. These solutions are shown to blow-up at exactly one point, and the location of this point is characterized. In addition, the shape and exact rates for blowing up are given. Résumé. Considéré le problème −∆uǫ = v p ǫ vǫ > 0 en Ω...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Differential Equations and Applications NoDEA

سال: 2011

ISSN: 1021-9722,1420-9004

DOI: 10.1007/s00030-011-0127-0